MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)

Model Answer: Winter - 2019

## Important Instructions to Examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)

| Que. No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 1 | d) <br> Ans. | Define Reynold's number. <br> The Reynolds number is defined as the ratio of inertia force to viscous force. Reynolds number is dimensionless number. It is used to determine the laminar or turbulent flow type. $\operatorname{Re}=\frac{\text { inertial force }}{\text { viscous force }}=\frac{F_{i}}{F_{v}}$ | 2 | 2 |
|  | e) <br> Ans. | State the principle of venturimeter. <br> Principle of venturimeter : - It is based on Bernoulli's equation that is the velocity increases in an accelerated flow by reducing the cross section area of the flow passage. | 2 | 2 |
|  | f) | Define discharge and state its unit. |  |  |
|  | Ans. | Discharge - It is defined as the quantity of liquid flowing per second through a section of pipe or a channel. <br> SI unit of discharge is $\mathrm{m}^{3} / \mathrm{sec}$. or lit/sec | 1 1 | 2 |
|  | g) <br> Ans. | State two uses of syphon. <br> i. To take out water from one reservoir to another reservoir separated by a hill or ridge. <br> ii. To drain out water from a channel without any outlet. <br> iii. To take out the water from a tank not having any outlet. | 1 each (any two) | 2 |
|  | h) <br> Ans. | Define hydraulic radius for trapezoidal channel. <br> Hydraulic Radius: It is the ratio of the wetted area to wetted perimeter. It is also called as Hydraulic mean depth. <br> $\mathrm{R}=$ Wetted area $/$ Wetted perimeter $=\mathrm{A} / \mathrm{P}$ | 2 | 2 |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION




MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)

| Que. <br> No. | Sub. <br> Que. | Total <br> Qxplain with a neat sketch the working of Bourdon's pressure <br> guage. | Marks |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ans. |  |  |  |  |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION




| Que. No. | Sub. <br> Que. |  | Model Ans | wer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. 3 | c) <br> Ans. | Differentiate any four points between notch and weir. |  |  | 1 <br> each <br> (any <br> four) | 4 |
|  |  | Sr.No. | Notch | Weir |  |  |
|  |  | 1 | It is an opening provided on one side of the tank or reservoir with free surface of liquid below the top edge of the opening. | It is a structure which obstructs the flow in an open channel. |  |  |
|  |  | 2 | It is a device used for measuring the rate of flow of liquid through a small channel or a tank | It is used for measuring the rate of flow of water in rivers or streams. |  |  |
|  |  | 3 | Notches are made of metallic plates | Weirs are made of concrete or masonry structure |  |  |
|  |  | 4 | Notch is of small sizes. | Weir is of bigger sizes. |  |  |
|  |  | 5 | e. g. Rectangular, <br> Triangular, Trapezoidal, stepped notch. | e. g. According to shape, discharge, width of crest, nature of crest. |  |  |
|  | d) | A concrete dam 15 m deep and 2 m wide containing water to a depth of 10 m .Find total hydrostatic pressure per meter run and centre of pressure on upstream face. |  |  |  |  |
|  | Ans. |  |  |  |  |  |



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)

| Que. No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 4 | c) | A centrifugal pump is required to pump $15 \mathrm{lit} / \mathrm{sec}$ against head of 32 m . Find the power required by the pump taking overall efficiency $\mathbf{7 5 \%}$ |  |  |
|  | Ans. | Given: |  |  |
|  |  | Discharge (Q) = $15 \mathrm{lit} / \mathrm{sec}=0.015 \mathrm{~m}^{3} / \mathrm{sec}$ | 1/2 |  |
|  |  | $\operatorname{Head}\left(\mathrm{H}_{\mathrm{m}}\right)=32 \mathrm{~m}$ |  |  |
|  |  | Efficiency $(\eta)=75 \%=0.75$ | 1/2 |  |
|  |  | Find : Power (P) |  |  |
|  |  | Solution : |  |  |
|  |  | $\mathrm{P}=\frac{\mathrm{w} \mathrm{Q} \mathrm{H}_{\mathrm{m}}}{\mathrm{n}}$ | 1 |  |
|  |  | $\begin{gathered} \eta \\ 9.810 \times 0.015 \times 32 \end{gathered}$ | 1 |  |
|  |  | $\mathrm{P}=\frac{9.810 \times 0.015 \times 32}{0.75}$ | 1 | 4 |
|  | d)Ans. | State Bernoulli's theorem. State any two application of it. |  |  |
|  |  | $\bigcirc$ |  |  |
|  |  | It states that in a steady, ideal flow of an incompressible fluid, the total energy at any point of the fluid is always constant. <br> Total energy $=$ Constant | 1 |  |
|  |  | $\frac{\mathrm{P}}{\gamma_{\mathrm{L}}}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}+\mathrm{Z}=\text { Constant }$ | 1/2 |  |
|  |  | $\frac{\mathrm{P}}{\gamma_{\mathrm{L}}}=$ Pressure head, $\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}=$ Velocity head, $\mathrm{Z}=$ datum head Applications: | 1/2 |  |
|  |  | Bernoulli's theorem is applicable to all problems of incompressible fluid flow, where energy considerations are involed. Practical application of Bernoulli's in following devices: <br> i) Venturimeter <br> ii) Orifice meter <br> iii) Pitot tube | 2 | 4 |







MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)

| Que. <br> No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 | a) <br> Ans. | Attempt any TWO of the following <br> What are major and minor loss of head in flow through Pipes? Write any two equations of minor loss. <br> Major loss: The major loss of head is caused due to friction when fluid flow through a pipe. <br> Minor loss: - The minor loss of head are caused due to change in velocity of flowing fluid either in magnitude or direction. <br> 1. Loss of head due to sudden expansion - $\mathrm{h}_{\mathrm{e}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$ <br> 2. Loss of head due to sudden contraction- $\mathrm{h}_{\mathrm{c}}=0.5 \mathrm{~V}_{2}^{2} 2 \mathrm{~g}$ <br> 3. Loss of head at the entrance $h_{\text {entry }}=0.5 \mathrm{~V}^{2} / 2 \mathrm{~g}$ <br> 4. Loss of head due to exit- $\mathrm{h}_{\text {exit }}=\mathrm{V}^{2} / 2 \mathrm{~g}$ <br> 5. Loss of head due to bend $\mathrm{H}_{\mathrm{L}}=\mathrm{KV}_{2}^{2} / 2 \mathrm{~g}$ <br> 6. Loss of head due to gradual contraction and expansion $\mathrm{H}_{\mathrm{L}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$ <br> 7. Loss of head due to obstruction $\left.\mathrm{h}_{\mathrm{L}}=\left(\left(\mathrm{A} / \mathrm{c}_{\mathrm{c}}\right) \times \mathrm{a}\right)-1\right)^{2} \times\left(\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$ <br> 8. Loss of head due to top pipe fitting $\mathrm{h}_{\mathrm{L}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$ |  | 12 |


| Que. <br> No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 | b) | A trapezoidal channel of most economical section has side slope 1.5 (horizontal): to 1.0 (vertical). It is required to discharge $15 \mathrm{~m}^{3}$ of water per second with a bed slope 0.5 meter in 3 km . Design the section using Manning's formula. Take coefficient of rogosity as 0.015. <br> Given:- $\mathrm{Q}=15 \mathrm{~m}^{3} / \mathrm{sec}$ <br> $\operatorname{Bed} \operatorname{slope}(S)=\frac{0.5}{3000}=\frac{1}{6000}$, Side slope $(n)=\frac{1.5}{1}=1.5$ <br> Manning's constant $(\mathrm{N})=0.015$ <br> Most economical condition for trapezoidal section haying following condition <br> i) $\mathrm{R}=\frac{\mathrm{d}}{2} \quad$ ii) $\frac{(\mathrm{b}+2 \mathrm{nd})}{2}=d \sqrt{\left(1+n^{2}\right)}$ $\begin{aligned} & \frac{(\mathrm{b}+2 \mathrm{nd})}{2}=d \times \sqrt{\left(1+n^{2}\right)} \\ & \mathrm{b}+(2 \times 1.5 \times \mathrm{d})=2 \times \mathrm{d} \sqrt{\left(1+1.5^{2}\right)} \\ & \mathrm{b}+3 \mathrm{~d}=3.606 \mathrm{~d} \\ & \mathrm{~b}=0.606 \mathrm{~d} \end{aligned}$ <br> Manning formula $\left.\begin{array}{rl} \mathrm{Q} & =\mathrm{A} \times \frac{1}{\mathrm{~N}} \times(R)^{\frac{2}{3}} \times(S)^{\frac{1}{2}} \\ \mathrm{~A} & =\mathrm{bd}+\mathrm{nd}^{2} \\ & =(0.606 \mathrm{~d}) \times d+1.5 d^{2} \\ \mathrm{~A} & =2.106 \mathrm{~d}^{2} \end{array}\right] \begin{aligned} & 15=2.106 \mathrm{~d}^{2} \times \frac{1}{0.015} \times\left(\frac{d}{2}\right)^{\frac{2}{3}} \times\left(\frac{1}{6000}\right)^{\frac{1}{2}} \\ & 15=2.106 \times \mathrm{d}^{2} \times 66.67 \times 0.629 \times d^{\frac{2}{3}} \times 0.0125 \\ &(\mathrm{~d})^{\frac{8}{3}}=13.587 \\ & \mathrm{~d}=2.66 \mathrm{~m} \\ & \mathrm{~b}=0.606 \mathrm{~d} \\ & \mathrm{~b}=1.612 \mathrm{~m} \end{aligned}$ | 1 | 6 |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

| $\begin{array}{\|l} \hline \text { Que. } \\ \text { No. } \\ \hline \end{array}$ | Sub. <br> Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 | c) <br> Ans. | A triangular notch of angle $\mathbf{1 2 0}^{\mathbf{0}}$ is used to measure the discharge. Determine the head over the notch, if discharge is $\mathbf{1 5 0 0}$ lits/minute. Assume $\mathrm{C}_{\mathrm{d}}=0.6$ <br> Given: $\begin{aligned} & \theta=120^{\circ}, \mathrm{C}_{\mathrm{d}}=0.6, \mathrm{Q}=1500 \mathrm{lit} / \mathrm{min}=\frac{1500 \times 10^{-3}}{60}=0.025 \mathrm{~m}^{3} / \mathrm{s} \\ & \therefore \mathrm{Q}=\frac{8}{15} \mathrm{C}_{\mathrm{d}} \tan \frac{\theta}{2} \sqrt{2 \mathrm{~g}} \times \mathrm{H}^{\frac{5}{2}} \\ & 0.025=\frac{8}{15} \times 0.6 \times \tan \frac{120}{2} \sqrt{2 \times 9.81} \times \mathrm{H}^{\frac{5}{2}} \\ & \mathrm{H}^{\frac{5}{2}}=0.010 \\ & \mathrm{H}=0.159 \mathrm{~m} \end{aligned}$ | 1 <br> 1 <br> 2 <br> 2 | 6 |

